

LABORATORY

研究窒
京都大学の研究室と教員は大学院あるいはは研究所に所属しています。環境工学コースはそれらの中から特に環境工学に関連が強い研究室によって成立っています。具体的には工学研究科都市環境工学専攻，地球珸境学堂，エネルギー科学研究科，環境安全保健機構，工学研究科附属流域圈総合環境質研究センター，椱合原子力科学研究所に所属する14の研究室と38名の教員で構成されています。

環境デザイン工学 栍キャンパス

廃葉物の再資源・エネルギー化技術および処理•処分プロセスにおける有害物質の制御技術 を研究しています。

フィールド調査やシミュレーションを通じて，資源採取•生産•使用•廃車・リサイクルの全ライ フサイクルにわたる環境負荷を解析し，循環型社会の構築を目指した社会システムの提案をし ています。

中国深非市のである埋め立て地での制直

東扎地方の林における土期に

放射性物質や重金属などの有害物質が，人や生態系 に及ぼすリスクとそのプロセスの解明，リスクを低減する提案を，調査•実験・シミュレーションにより行います。

放射性物質，重金属などの環境中で分解されに くい物質の土壌や地下水環境中での動態や，汚染された土壌•水環境の修復方法を明らかにし ます。

放射性廃裹物管理 复会㫳子力科学研究所
放射性廃童物の処理，処分の安全性の評価やそ の方法の開発，原子力施設の廃止に伴う諸問題 の解決に向けた研究を行っています。

安全衛生工学

吉田キャン
職場で扱う化学物質やナノマテリアルの曝露評価に関する研究を行っています。現場調査や分析，推算によるリスク評価を通じて，安全な職場 を提供する新技術を探求しています。

竟工学

地球工学科
環境工学コース

大気•縶環境工学
桂キャンバス
地球温暖化抑制に向けて，地球全体を対象とし た社会•経済モデルや気候モデルを駆使して，将来のエネルギーシステム，農業システム，土地利用，水需要と温室効果ガス排出削減策の推計 を行い，経済と環境が両立する将来像を中長期的にデザインしています。研究成果は国際的な制度，日本およびアジア周辺諸国の地球環境政策策定へ貢献しています。

エネルキー・省資源．創エネルキー・資源回収型廃水処理システムの構築を目指し，要素技術 の開発や評価に関する研究を実施するととも に，持続可能な社会実現の提案を行います。 しています。

部市薢生工学
絓キャンパス
水道システム全体の持続的再構築を目指した配水管内環境の管理の高度化，また，安全で快適な水道水供給のため，最新の質量分析機器等による変換過程を考慮した化学物質管理手法の構築，浄水プロセスでの病原微生物の不活化機構に関する研究を行っています。

環境質管理
法域䋰緵合

自然由来で汚濁を引き起こす物質や，人が活動をす る上でつくりだす汚染物質の発生機構や環境中の運俞，それらが生態系に及ほます影響について研究し ています。

環境質予見

水環境中に存在する微量污染物質や病原微生物 の実態を調査•解析•評価し，健全な都市•水循環系を構築するために必要なモニタリングや下水道•再利用などの技術開発を行っています。

水質分析•水処理技術，微量污染物質の分析•処理技術衛星•土地利用データ解析技術等を

駆使し，水珸境の保全•管理，物質の循環利用 の促進に関して，現場主義の調査•実験とモデ ル化解析による実用的•実践的な研究を展開

環境衛生学
襍キャンバス
環境中に放出された化学物質や粒子状物質によ 3，人体への影響について評価を行い，人が健康 に生活できる環境の提案をします。

東アシャ地地におりる

人間活動などに伴い発生する有害大気汚染物質や黄砂が環境や人の健康に与える影響を評価するために，フィールド観測や模擬大気環境下における実験，モデルによるシミュレーション などを行っています。

都市環境工学專攻

崄境デザインエ兴

Environmental Design Engineering

都市噮境工学専攻

環境髟生学

Environmental Health

－循環型社会における，廃傕物の有効利用及び適切な管理を目指して

皆蒿物は集㱴された貴重な資源です。再資源化，エネルギー回収を図り，同時に環境汚染やリスクを最小化することが求められます。本研究室は，物質やエネル
 とを目指します。

持続可能な資源循澴技術，廃亲物処理•管理技術の開発 およびシステムの構築
廃莱物循環資源は様々な成分，元素からなり，バイオガス化や妵却，溶䨖 などの熱処理等の中間処理及びエネルギー・資源回収が行われ，一部はり サイクルされ，残りは最終処分されます。例えば，最終的な残さ中には有用金属とともに有害金属や放射性物質などもも濃縮されます。
それぞれの成分や元素に応じて，環境保全，省資源•省エネルギ一面から リサイクル技術，廃棄物処理•管理技術の開発が必要です。また，それらの技術を適用する場（国）等を考慮すると，それらの技術の組合せや連携など
 とともに，トータルコストヤラライフサイクリルを考慮した持綕可能な節を社会イ ンフラシステムの横箖を目指した研究を行します（図は水銀の例）。

革新的技術を用いたバイオマス及び

廃葉物のエネルギー化プロセスの構筑
湿閏廃葉物として，下水污泥や家畜糞尿は，我が国で最も多く発生する産業廃葉物ですが，カーボンニュートラルなバイオマスとして位置づけら れています。また，同心゙バイオマスとして，近年光合成により油分を高收率 で蓄積する微細渵頪が注目されています。これらは高含水であり，燃料と して利用するには，省エネルギ一な脱水および油分の抽出と，その高効率化が重要です。
そこで，本研究空では液化ジメチルエーテル（液化DME）を用いた溶媒抽
 セスを提案しています。この方法では，常温で対象物の脱水，および油分抽出が可能となること，浴媒としての液化DMEが䋊り返し利用できること が，最大の利点であり，本プロセスの構築を目指しています。

－教援高野裕久
－Prof．Hirohisa Takano
－•准讶授上田 佳代
－Assoc．Prof．Kayo Ueda
－環境からの健康リスクの低減を求めて
現代社会の都市化，童業化，複維化等に伴い，環境汚染とその自然，社会及びヒトへの影響が危惧されています。環境汚染のヒトに対する健康リスクを評価する ためには，ヒトをとりまく環境影響因子とその相互関係について十分な情報を収集し，現状の曝露量の推定，および，その影響について量的な関係や発現機褠を研究することが重要です。環境敭生学講座では，上記のような研究により健康リスクを総合的に評価する手法を確立し，人の健康被害を未然に防止し，さらに人 の健康を維持堷進することを目標としています。

大気汚染物質の健康影響に関する研究
•実験的アプローチリ大気汚染物質しくは種々の成分が含まれますが，健康影響を規定する要因は明らかにされていません。一方，大気汚染物質の健康影響は，疫学的にも実験的にもアレルギー疾患や呼吸器疾患を有する集団に発現しやすいことが知られています。そこで，PM2．5などの微小粒子・エアロン゙ル，黄砂，及びそれらに含まれる共香族崖化水素や金属などの大気汚染物質構成成分の健康影響について，呼吸器系，免疫・アレルギー系 を中心に実験的に評侕するとともに，影譻発現機構を明らかにします。【疫学的アプローチIPM2．5をはじめとする大気汚染物質，黄砂•越境大気污染物質や，気候変動に伴う樰瑞な気象要因（熱波，大海）と様々な疾患
病発生データと組み合わせ統計手法を適用することにより，環境の健康影響を定量的に評価します。

環境化学物質の健康影響に関する研究環境中の化学物質は日々増加 ，生活空間にも普遍的に存在 しています。高毒性物質の大量曝露による健康影響発現の危惧 は減じていますが，低毒性物質 の微量㡢露によるる健康影響は末 だ明かにされていません。可塑剤をはじめ，身の回りの環境化学物質の健康影響を，培養細胞 や動物を用いて実験的に評価し ます。また，影響発現幾構の解明をめざします。

液化DMEを用い太微細㮸類からの油分抽出フロー区

トトビー性皮膚炊泟状

健康影響の低減をめざす環境医工学的研究

環境汚染物質の健康影響を低減するためには，発生源に対する対策と共に発生後の䍗境医工学的対策も有効と考えられます。一般睘境に存在し，近年そ の健康影響が大きな社会問題となっている花粉等のアレルゲンや環境汚染物質を対象とし，環竟医工学的にその影響を低減する試みについて検討します。

環境疫学手法を用いた研究

環境による健康リスクを評価するためには，人が実際に生活している での曝露状況や，その要因に曝露された結果として生じる疾病の分布や頻度について正確に把握することが重要です。環境疫学研究では，環境疫学研究では，個人ではなく，集団を対象とします。地域の健康事象発生データ からその分布や頻度について検討するとともに，地球•地域の環境も二タ リングの観測値を用いた適正な曝露評価を行い，統け十的手法を適用して環境要因の曝露と健康事象との関連を定量的に評価します。また，環境因子 の影響を受けやすい集団（高感受性集団）についても明らかにします。これ らの研究から得られた結果から，暴露一健康事象関数を構筑し，環境要因 による健康インパクト評侕も行います。

PM2．5 䦎違死亡数の分布

都市噮境工学専政

Water Quality Engineering

都市環境工学專攻

- 淮教授西村 文武
－Assoc．Prof．Fumitake Nishimura \square

－Junior Assoc．Prof．Taira Hidaka

－健全な水環境の保全と創造を目指して

本研究室では，流域の水質，水量および水場を考慮に入れての健全な水噮境の保全と創造ならびに健全な水循澴系の確立のために教育•研究をしています。水噮境中での水質変化とその要因分析，物質の移行•濃縮•変換を含めた水質污濁機構と污濁物質の運命，水質評価のための各種指標とその測定•分析方法，水質保全技術，水処理技術，污濁物負荷低減と資源循澴回収技術などについて，研究しています。実験を行うことによる研究実施が主ですが，現地調查（フィールドサーベ 1）や計算機によるシミュレーションについても行っています。成果は学会等，大学外部で発表します。

建全な物質循環を促進する新たな社会基盤の構築に関する研究

人間の活動域で発生する廃水や廃莱物に含まれる有害物質を適切かつ効率的に処理し，同時に内在する資源やエネルギーの回収を行うことで，安全で健全な物質循環を可能とする，エネルギー・資源を回収する新しい都市廃水•廃妄物処理システム技術の開発を行います。このシステムを 21 世紀の新たな社会基盤施設として確立し実装化することを目指しています。 そのための新しい概念のシステムを提示し，その各要素プロセスに必要な設計•操作手法の解明と提示を行つています。具体的には生物反応と物理 し学的反庙を組合甘たシステレを相家し，分子物学的手法等の揰々の最化学的反忍を組合せたシステムを想定し，分子生物学的手法等の種々の最新の科学的知見や手法を導入した解析を行し，適用性•実現性について产価していきます。

物理•化学的酸化反応を用いた水処理

公共の上下水処理において，濃度が極低いにも関わらず，異臭味（上水）， ヒトへの健康影響（上下水），放流先の水生生態系（下水）への影響か懸念さ れる化学物質や病原微生物の存在が指摘されています。これらの中には，従来の生物反応を活用した処理法では除去しえないものも存在し，紫外線 やオゾン，パルス放電等を用いた物理•化学的な酸化処理に期待が寄せら れています。これらの処理方法の最適な設計や運転のために，実証的検討 および理論的解析の両面からのアプローチで研究を行っています。特に，

除去対象物質と生成抑制対象物質のバランスの達成，共存物質としての有機物の反応性評価および有機物の処理性能への影響に焦点を当てていま す。さらに，オゾン等の物理化学プロセスを核とした新規な下水処理プロ セスの開発にも取り組んでいます。

水質污濁機構の解明

人間の活動に伴って種々の有害物質が環境に排出され，それらは環境中 で輸送•变換され，生態系を通じて濃縮され，水質污濁問題を引引き起こしま す。同時に，我々入間の生存の基盤である生態系にも甚大な悪影響を及ぼ します。これら汚染物質の発生機構，環境中での輸送•変換機構，生態系で の移行•濃綋機構およで瓄境景響についてのフィールド調查を基歪とした研究を実施し，動態把握を行うとともに，適切な流域管理手法の開発に必要な情報整理と考察を行します。

$(\longrightarrow \longrightarrow$ 環境汚染物質の移動）
人間活動と瓄洗の関かり

－ひとと環境の健康•安全を科学する
種々の有害物質に日常的に曝露される今日，健康景響を心配する人も多いでしょう。しかし，どの物質がどの程度の悪影響をひき起こすのかが分からなけれ ば，対策が必要かどうかや対策を施す優先順位等を議論することができません。私たちにとって，どの環境問題がどの程度重要なのか？どうすればその悪影響を低減できるのか？この課題に取り組むのが環境リスフ研究です

環境汚染物質による健康リスクの予見的評価
私達は多くの微量環境污染物質に日常的に暴露され，潜在的な健康りス つの下に生活しています。そのリスクの大きさを定量化する際に，未知の物質の存在が問題となります。このためDNA解析や動植物を用いた畫性の評価，数值シミュレーションによる環境中動態と曝露量評価，人体中での学動モデルの作成などによって，十分なデータが存在しない物質の健康り スク評価を行う手法を開発し，実際の化学物質などに適用します。また，健康リスクという観点では，薬剤耐性菌による環境水の污染についても， DNA配列の解析などを行い，その性状を研究しています。

環境放射能のリスク評価と除染対策
2011年，福島第一原子力発電所の事故により環境中に拡散することと なった放射性物質が，今後どのように学動し，実際に付近住民および日本

> 濃度 (Bq/kg)

等选しべルに対対した 10 年後のくs－137の地中分

人全体にどの程度のリスクとなるかを評価します。また，現在提案されて いる各種除染対策についてもその効果を楥討し，最適な除染計画を提案し ます。

粒子状物質のリスク評価と対策
自動車，䙺却炉からの排気ガス，ナノ村料を使用した化䊒品や新機能性材料などに含まれる粒子状物質が環境中に放出され，私達の生活空間にも到達します。また，原子力発電所事故時の放射性プルームにも多くの粒子状物質が含まれていると考えられています。粒子状物質ではガスやイオン と異なり，大きさ，元素組成，表面積，形状などの物性を考慮したリスク評価が求められます。フィールド調查，風洞を用いた大気中挙動試験などに よって，様々な粒子状物質の環境中学動を評価し，そのリスク低減策を提案します。

このように，環境ゆに存在する放射能や粒子状物質，有害物質が，私達の健康にどれほど関わっているのかを，計算，調查，実験により明らかにして行きます。

環境リスク評価
放射能

健康

影響

都市環境工学專攻

大気•㗎環境工受

Atmospheric and thermal environmental Engineering

－地球規模の環境問題の解決方法を評価する統合評価モデルの開発とその応用

地球温暖化や越境大気污染，食糧問題，水資源枯渴など地球規模の罢境問題の影響やその解決方法を評価するためには，工学だけでなく，社会•人文科学にわた る知識と情報を有幾的に組み合わせせる必要があります。出来るだけ広い視港に立って関連情報を整理し，それらの間に存在するメカニズムのモデル化や，定量的 な柍討，将来推計および対策の立案などに関する研究を行っています。

統合評価モデルを用いた世界•主要国の温室効果ガス排出量見通しと削減費用の算定
2030年から2100年といった短中長期に及ぶグローバルの温窒効果か ス削減に関する研究を中心に行しいます。エネルギーや土地利用を詳細に扱 ったモデルを用いた解析を中心として，政策提言，及び関連する科学的知見の創出を行します。
アジアは世界全体の温室効果がス排出量の半分近くを占めており，この地域で温室効果ガスが削減できるのかは，世界の気候変動対策の一つの鍵 となります。その中でアジア各国は多様な政治体制，エネルギーシステム，温室効果がスの構成を有しており，さらに各国の政策は異なる優先事項が あります。例えば近年では中国の大気汚染は深刻であり，気候変動対策と大気污染対策は一体となって進められています。そのような各国に応じた低炭素戰略を本テーマでは提示することを狙います。

AIM（Asian－Pacific Integrated Model）

持続可能な開発目標の定量化，様々な部門への波及効果の推計持続可能な開発目標（SDGs）は貧困，䬣锇，公窗㣮生や経済，気候変動な ど2030年における様々な分野の開発に関する目標を設定しており，これ らのうち環境に深く関連する項目を取り上げ，2030年に留まらず2050

年，2100年までを見通した開発に開する目標を検討します。気候変動だけ でなく複数の分野にまたがる分析が主眼です。钥識，貧困，水不足など人間活溌の根源に関わる社会経済的な事象のモデリングとそれを用いたシミュ レーション分析を行しいす。

SDG指鼿の定㫫化例

土地利用農業，食料需要と気候変動

土地は水，食糧の供給と深くかかわり人類にとって極めて重要な資源で す。また，人為起源の土地用変化はこれまで生態系に大きな影響を及ぼし てきました。さらにバイオマスエネルギ一の供給のために大規模に土地利用改変が必要になる可能性があると言われています。本テーマでは，土地利用の空間詳細な分布を将来にわたつて推計し，農業，水，生態系，エネル ギーなどとのかかわりを分析します。

2005 年の豊地の割合－教授伊藤禛彦
－Prof．Sadahiko Itoh

－治教授越捘 信哉
－Assoc．Prof．Shinya Echigo
20）－助教中西智宏
－Asst．Prof．Tomohiro Nakanishi

－都市への供給問題を通じ，生を部「衛生1理念の実現へ向けて

人々の健康や生命は，種々の環境上の問題によって叠かされています。本研究室の研究活動の理念は，環境中に存在するヘルスリスクに対して，これを工学的 にコントロールリすることです。上水道とその関連分野を対象として，研究展開を図ります。目体的には，次世代型浄水処理システムの構築と並んで，水源•流域あ るいは浄水施設から各家庭までの配水過程で発生する諸問題に対する対策•解決法の提案を目指します。

人口減少社会へむけた上水道システムの再構築と高機能化に関する総合的研究
わが国の上水道は成熟した社会インフラですが，現在，困難な問題を多 く抱えています。新たな問題の一つは，人口減少社会の到来と配水管等の老朽化であり，それらに対応しつつ上水道システムを再構築していく必要 があります。
当研究室では浄水中の懸濁物質が蓄積することによる配水管内の環境形成に着目し，管内面木才質のテストピースを用いた微精子やマンガンの付着

 の提案にも取り組んでおり，これらを通して「浄水処理で何を除去し，配水系に何を流し，人々に何を飲んでもらうか？」について熟考し，トータル リコーションを導き出します。

カルキ臭低減型浄水処理プロセスの提案

浄水処理技術の進歩に伴し，水道水の安全性向上が図られてきた一方，利用者からのおいしい（＝力ルキ真のない）水道水に対する要求はますます高まっています。当研究室では，これらの要求に応え，かつ安全性を碓保し た水供給を実現するため，酸化処理を陽•陰イオン交換処理を組み合わせ た新しい浄水処理プロセスの開発に取り組んでいます。酸化処理では，従来の高度処理で用いられてきたオゾン単独処理に代わり，オゾン／紫外線処理のより強力な有機物酸化作用を利用します。得られた浄水の力ルキ臭生成能の低減効果は，提案プロセスで処理した浄水を塩素処理した試料を用 いて，三点比較官能詞験により評侕します。同時に，微量污染物質（特に消毒副生成物）および微生物の各視点からも，水道水の安全性確保に取り組み

ます。（図：大阪市で楾碓中のパイロットスケールの浄水処理プラント（上） と処理により達成されるカルキ臭生成能低減効果（下））

ヒトへの健康影響を指標とした微生物リスク管理の高度化水道水の微生物的安全性は㴵素消毒によって碓保されていますが，水使用量の少ない地域や人口滅少の進む地域では配水管内の残留権素を維持す ることが難しく，微生物の再增殖が懸念されます。本研究は病原性を持ち うるレジオネラ属菌などの日和見感染菌して焦点を当て，配水システムでの微生物リスク管理の高度化に取り組みます。具体的には，室内の小型リア
 するとともに，配水末端地域の水道水を採取して分子生物学的な分析を行 うことにより病原微生物の存在実態を明らかにしています。

流域圏総合環境質研究センター

Research Center for Environmental Quality Management

流域圈総合澴境質研究センター

環境覧予見

Research Center for Environmental Quality Management

■ 環境の質に関するサイエンスを極め環境管理に役立てる。
水環境問題や化学物質汚染問題など，環境の質に関連する諸問題を解決するため，分子しべルのミクロな視点と流域しべルのマクロな視点からのメカニズム研究を推進し，新たな原理を探求するとともに，環境質管理手法の提言を行い，社会に貢献します。

アジア型の統合的流域管理一アジアの英知による実現へ
地球上の淡水の9割以上は湖沼•河川にあり，多くの重要な価值を持って
調整機能，美しい景钼の提供のような文化性などが挙げられ，これらは「生態系サービス」という言葉で表現されます。流域買境の悪化が進むことによ り，その最終甘端である湖沼•河川の様々な機能が損なわれてしまいます。環境工学分野の新チャレンジとして，国内のみならずモンスーンアジア諸国の流域に着目して，現地の大学•研究機関と共同で，健全な流域のあり方を㛟討します。気候変動を含めた将来状況を踏まえて，シミュレーショ ンにより水量•水質を予測し，流域利用の背景にある文化や歴史も考慮し た上で，持縨的•効果的なアジア型の水環境保全対策を目指します。

琵琶湖の物質循環の解明—細菌とウイルスの役割と影響 一琵琶湖の細菌とそれに感染するウイルスに着目して研究しています。ス プーン1杯程度（1mL）の琵琶湖水中に細菌が 100 万匹，ウイルスが 1,000万個も存在しています。細菌は1日に倍になるスピードで増殖し，ウイノ スは細菌の半数に感染し殺しているのです。この衝撃的な現象は物質循買 にどのような役割を果たしているのか？これは迫りくる地球温暖化が琵琶湖の物質循買や水質に対して，どう影響するのかを理解•予測する重要な研究です。

琵琵棚のウイルス

新しい毒性評価法の開発—生命科学的アプローチー
重要な地球環境問題のびとつに，化学物質の適切な管理があります。新 しい化学物質が上市される前には，必ず安全性評亚が実施されますが，こ の中で，毒性評価は特に重要です。我々の研究室では，特に遺伝毒性の新し い評価法開発に力を入れており，我々が開発したDNA損傷や然然変異の検出法は様々な製薬企業の開発現場で用いられています。遺伝書性以外に も，免疫㶳性や内分泌擋乱書性の評価方法の研究も進めています。

－教濖清水芳久
\bullet－Prof．Yoshihisa Shimizu

－准教授松田知成

－Assoc．Prof．Tomonari Matsuda
－教授田中 宏明 －Prof．Hiroaki Tanaka －助教中田典秀 －Jr．Assoc．Prof．Norihide Nakada －特定时教井原賢

－環境質の向上と評価，環境汚染の防止と修復のために

人間活動から排出される化学物質や病原微生物の下水道や水㯰境中での挙動と，人や水生生態系への影響についての研究を行っています。フィールド調査とプ ラントなどでの実験を基盤とし，機器分析やバイオアッセイなどの生物学的評価手法を用い，污染実態把握，対策技怵や管理于法を研究し，多様な生物が生息す る健全な都市•水偱環系の構䑁に資するる研究を行つています。

水系における病原微生物による汚染実態と流域由来の評価と制御に関する研究
水噮境中には様々な病原微生物が存在し，なかでもウイルスは大腸菌な どの細菌に比べ水中での生残性や塩素消毒に対する耐性が高く，薬剤耐性細菌とともに先進国でも制御が必要と認識されています。本研究では，琵琶湖や淀川流域を対象水域として，病原ウイルスを含む病原微生物による污染実態を把握するとともに，雨天時の未処理下水による影響調査と制御方法について研究しています。また，最新の次世代シーケンサー等を用い て流域のウイルルスや大腸菌の遺伝子を詳細に解析することによって污染源 を把握し，将来の環境基準の設定や消青技術の開発，流域での病原微生物 を把握し，将来の環境基準の設定や消素技術の開発，流域での病原微生物
の効果的な制御を䘖生学的に安全な水環境の碓保への貢献を目指していま の効果

持続可能な水資源確保，環境管理，エネルギー管理の視点から，水の再利用の研究の必要性は，世界的に高まっています。本研究では，MF，UF， $N F, ~ R O$ など有機•無機瞙やオゾン・UV•光触媒などの酸化技術，MBRな どの生物処理を組み合わせた水再生技術を実験室，パイロット，実証スケ ールで検証し，再生水の水質やリスクを評価し，その安全性と处理工ネル ギーやコスト削減の研究を行っています。再生水の1SO規格化や国内外の再生水利用促進，2030年の国連持続可能開発目標（SDG）の実現を目指し ています。

再生水実姃施設

水再生水を風用い，

変換過程を考慮した日用化学物質の管理

手法と水環境中挙動の把握に関する研究
現在の化学物質管理の法体系では，都市の水循環（上下水道，河川流下） で化学物質が受けうる化学的，生物学的な変化（変換過程）やそれにより生 じる化学物質については考慮されていません。そこで，液体クロマトグラ フ－高分解能質量分析計（LC－MS／MS）や最新のLC－四重检飛行時問型質量分析計（QTof／MS）を駆使し，既存の管理体系では見過ごされている化学物質，前駆物質や生成物の同定に挑浅します。以上の研究成果より，変換過程 を考慮した化学物質の都市水循環における新規管理手法の提案を目指して います。

in vitroバイオアッセイを利用した水環境中の
医薬品の毒性評価に関する研究
残留医薬品による水環境污染が国内外で数多く報告されています。医楽品は，生体内で特異的な生理活性を発揮するようにデザインされているた め，ヒトを含む生態系への悪影響が絸念されています。年々増え続ける医薬品に対し，医薬品の生理活性を測定できるin vitroバイオアッセイと LC－QTof／MS分析を組み合わせ，水噮境中の医薬品の生理活性の実態把握 や水生生物への影響を解明する研究を進めています。さらに，各種の下水処理技術の検証から，生理活性をどの程度まで削減すれば安全であるか提示することも目指しています。

環境安全保健譏構

Environmental Preservation Engineering

環境安全保健璣構

Occupational Safety and Health Engineering

■ 廃杗物から社会を視る，その知見を循環型社会形成へ

廃葉物から社会を視ることは，循睘型社会形成への知見を与えてくれます。廃裹物の適正管理技術や化学物贊動態との関連を持たせながら，主に物質循睘のシ
 る柍討も行います。

循環型社会形成に向けたライフサイクル分析に関する研究再生可能資源や廃葉物を利用する技術やシステム，持続可能な循環型社会をめざした中長期のシナリオについて，エネルギーや温室効果がスなど を指標としてライフサイクル分析を行っています。3R（Reduce，Reuse \＆Recycle）方策や廃菓物管理に関する技術やシステムを対象として，様々 なシナリオや新たな提案を解析の対象としています。

ライアサイクルアセスメント（lan

循環型社会形成モデルと物質フロー・化学物質コントロール に関するシステム解析
循環型社会の構築に向けては，ごみから訴える情報蓄積とともに，循褱 に向けた技術やシステムの社会構築への課題と解決方策を研究する取り組 みが求められます。また，循瓄型社会におけるモノの流れを把握し，あるべ き流れを考えるためには，社会経済活動における素材や製品の生産•使用•廃棄の実態，それらプロセスからの化学物質の環境排出，自然環境におけ る化学物質の挙動を把握することが必須です。そこで，物質フローモデル

家庭であ細縕成眮㭗による手つかが食品

や環境動態モデルを用いて，モノのライフサイクルの記述と環境負荷の試算と実測による検証を行っています。これらを通じて，循環型社会政策の社会実装を強く意識し，個別リサイクル制度や特定の有害物質使用を控え る制度といつた政策効果の見通しを予測し制度設計に活かしています。

PCB晛制分解処理事業を経大紷PCB排出量推誰

教育研究の環境保全と安全管理

教育研究環境での実験安全管理，環境指標や工ネルギー・資源指標（溶剤 や重金属類，温室効果ガスなど）に関する基砬研究を行うことにより，その環境又ネジメントシステムや環境報告書への応用を進める研究を行ってい ます。また，地球瓄境学堂環境教育論分野（ 浅利研究室）はじめ学内の研究室とも連携しながら，サステイナブルキャンパス推進のため，参加型の環境配慮行動実践イベントリエコ～るど京大」等に取り組んでいます。

－教授橋本 訓
\bullet Prof．Satoshi HASHIMOTO

－淮数援松井 康人

－Assoc．Prof．Yasuto MATSUI
－安全で快適な職場を支える新技術を探求する
わが国では 1972 年に，瞕場簤境を健全なものとする法令が体系化され，安全衛生管理を担う票門職制度も整備されてきました。一方で，瞕場で扱う有害物質
改善策の提案を通じて，安全で快適なの職場を提供する新技術を探求し，社会に貢献します。

瞳場環境の定量的評価とエビデンスに基づいた改善措置化学物質や粒子状物質，物理的有害要因，労㔼態様に係わる有害因子，安全に係わる危険因子など，職場瓄境におけるすべてのリスクの程度を，そ れぞれ個別に，客観的に，可能な限り科学的に定量評価し，そのエビデンス に基づき優先順位を決定し，これを削減する管理が求められています。 そのために，実際の労顀現場で調査を実施したり，発生源の一部を模疑的に実験室で再現したり，上トの呼吸器における吸入モデリを作成したり することで 新たた評価技術の探求や，改善に向けた場案を行います。
 スキルの習得や調查，研究に留まらず，安全で快適な職場環境を形成す るための，「計画－実施－評価－改善」の一連過程が，自身で管理できる工 スパートを養成します

生物学的指標を活用した有害物質の曝露評価
ヒトへの有害物質の曝露経路は，「経皮•経気道•経口」に大別されます。空気中や食品などに含まれる物質の濃度から，ヒトへの暴露量として試算 することも可能ですが，血液や尿，唾液，毛髮などの生体試料中の指標を計測することで，曝露量を推定することができます。これらのバイオマーカ一は，健康䚲断での値のように，曝露量を反映するのみならず，疾患などの影響星を現す時もあります。
リスクか懸念されているアクリルアミドやアルデヒド類は，血中のたん ぱく質やDNA と結合すると考えられており，その寿命に応じた累積的な曝露評価が可能であると期待されています。

質量分析による指榡の定量
ナノマテリアル・粒子状物質の曝露評価手法の確立
酸化チタンやカーボンナノチューブなど，多くの種類のナノマテリアル が開発され，すでに市場に出回っています。アスベスト様作用をはじめ，こ れらの有害性についても検証が進んでいます。
一方で，これらの村料が製品として使用された際に，ヒトにどれほど曝露があるのかについては知見が足りていません。チャンバーを用いた1粒子追趽システムを開発することで，国際標準としての暴露評価手法を提案 しています。これにより，事業者自らが評価する自主管理体制が期待され ています。

- 淮教受藤川陽子
－Assoc．Prof．Yoko Fujjkawa

－目教䇠田卓見
－Asst．Prof．Takumi Kubota

－放射能等の汚染物質の環境動態•安全評価•環境浄化の研究
本研究窒では放射性物質•放射線を利用して，放射性廃葉物の地中処分に係る地質環境中の放射性物質の動態や汚染された環境の浄化方法についての基樜研究 を行っている。またえられた基從研究の成果を社会に還元するため，表流水や地下水•土壌•㳣却夾等の浄化のパイロットプラントの建設にも取り組んでいる。

放射性廃亲物の最終処分と放射性核種の環境動態

原子力の利用に伴し様々な放射性核種を含む発電所廃葉物が発生してき た。この最終処分は地中埋設が基本方策であり，特に長半減期の核㮔を高濃度に含む高しべし放射性廃棄物等については，特定放射性廃莱物の最終処分に関する法律（最終処分法，平成十二年法律第百十七号））で地下 $300 \mathrm{m以}$深に埋設処分することが決まっている。ただい，処分場立地を巡って国内世論 は紛糾し，いまだに候補地が定まっていない。しかし，この処分概念を補強す るための研究開発は数十年以上にわたり進められてきている。
廃棄物の哣設処分に関連して重要な放射性核種は，I－129，Se－79，Tc－99， C－14や，ガラス固化されたた廃葉物から搈出しやすいCs－135，浅地喏処分対象 となる発電所廃棄物中にも多いCo－60，Mn－54，Sr－90等である。研究空で はこれらの重要な核種の地下水中での移行特性を明らかにするために，地層 を構成する岩盤への核㮔の吸着分配特性，細孔への拡散，化学的•生物学的過程による存在形態変化を実験やモデル解析により研究してきた。
また，福島第一原発事故に伴い，一般•產業廃葉物の烧却庣等（放射性物質污染対処特措法に定める指定廃莗物等）に放射性セシウムが含まれるように なった問題に対処する技術開発を行ってきた。具体的には㳣却灭からセシウ ムを抽出，抽出液につエロシ アン化物（Ferと略称）イオン を添加して形成される微量 の難溶性Fer結晶にセシウム を取り込ませ，放射性セシウ ムを含む焼却夾を大幅に減容する手法を用いている。現地自治体等と㙝力し東北地域で現場試験をも次にわた り行ってきた。

さて，特定放射性廃䓶物，指定廃莱物共に，埋設処分への道筋は法的に定 められ，処分の安全碓保のための技術開発も行われている。しかし，指定廃童物については，福島県下で処分場が何所定まったものの，その他の都道府具 では立地のめどはたつていない。特定放射性廃兗物の最終処分については法律が成立して 20 年，ほとんど立地のめどはたたないままである。この状況に かんがあて，我々は実際に放射性物質を日本の地下噮境 に埋設しても安全が確保でき ることを実フィールドで示す ことが必要と考えた。そこで 2018年度からは，福島第一原発事故以来，低濃度ながら放射性セシウムを含有するよ
 ついなったゴミ烧却灰を実 に受しつ入れている最終処分場

の浸出水及び周辺地下水の本格的な調查に着手した。調查でえら れた地下水位や地質ボーリングデ －タの情報を整理して地下水流動 の数値シミュレーションを実施し てきた。また，浸出水や地下水試料 の放射能分析及び化学的な成分分析から得られたビッグデータを

幾械学習によるパターン認識技術 を援用して整理してきた。これらの結果から我が国の管理型処分場で放射性 セシウムを含む廃葉物が安全に埋設できることが明らかになりつつある。今後，IAEA專門家と㙝力し海外での同様な調查を行っていく計画である。

アジア途上国の環境問題に対応する技術開発と環境污染物質の安価な分析法の研究
アジアの大河流域で地下水中に多く存在し，何百万人もの人々に健康被害をもたらしている砒素を鉄バクテリア生物湲過法により除去する技術開発を実施してきた。同法は地下水中に自生する微生物を用いる砂濾過法の1種で水処理用薬品も交換部品もほとんど必要としない。日越両国での長期現場試験の結果，実プラントがベトナム現地で楾䱿した。本法の砒素除去
放射光施設SPring8において，連統通水条件下でのX線吸収微細構造測定を行った。また，やはりアジア地域の地下水に多いアンモニアのアナモック ス法による処理のため，ベトナムでの垷地試験を実施した。次世代シーク
 ックス処理という独自な系における微生物の状態を解明している。更に，協力企業との共同研究でボルタンメトリ法による微量元素分析の完全無人 の分析操作を可能にした。今後ベトナムの国立研究所との共同研究をさら に展開する。

－原子力利用に伴い発生する問題を解決し，環境を保全する
発電用原子炉をはじめとして原子力を安全かつ繙続的に利用するためには，原子力施設から発生する放射性廃葉物の問題を解決していくことが必要不可欠で
動解明，除染に関する研究も行っています。

原子力施設由来の放射能汚染に対する除染•浄化，環境中挙動に関する研究
東京電力福島第一原子力発電所の事故によりCs－137をはじめとする放射性物質によって環境が大規模に污染されました。環境修復に向けて，本研究分野では除染および土埴系•水系の浄化に開して，効率的な除染モデ ルの検討などを行っています。また，核分裂生成物であるSr－90，燃料成分 であるU，Puなどを環境試料から検出し，その同位体比を精密に測定して環境中放射性元素の由来の解明にも取り組んでいます。また，「汚染水｣を対象に効率
この他，過去に研究実績のほとんんどない放射性Teについて，土壌中挙動，植物移行に関する研究も行っています。

有害污染物質の環境中における動態とその評価
環境中に放出された污染物質は，大気や水，士壌に移行し，地表付近に保持された物質は，その後めつくりと土壤中を下方へ移動します。この時の水分や物質の学動を詳細に追跡することによって，有害物質の移動や土壌 への収着機構を解明し，環境や人間への影響を評価することが可能である と考えられています。特に土壌中での物質移動に影響を与える重要な要因 の一つである存在形態に着目し，その定性•定量方法の開発を試みていま す。また，各種実験結果をモデリングし，数学モデルによる計算結果と実測値を比較検討することにより，土壌中での有害污染物質の動的学動を予測值を比䡛梌討することにより，土壌中での有害污染物質の動的学動を予測 するモデルの構築を試みています。一方，放射性核㮔を対象としたもので は，海洋中に排出された核種と海洋中浮遊物との収脱差機構を実験的に解

 すが，京都大学研究用原子炉（KUR）を用いた放射化分析という手法で微量元素分析を行っています。

原子力施設の事故に伴う放射能汚染と災害評価に関する研究原子力発電所などの原子力施設において放射能放出を伴う事故が発生し た場合の環境影響を，様々な放射能放出モード，気象条件下でシミュレー ショル，周辺地域での放射能污染や被ばく線量の評価を行つています。 また，チェルノブイリ原発事故や東海村 ClO C臨界事故なと，実榢に起，解明な問題点を明らかにし，放射能污染や被ばく線量などの新たな解析を行って，災害規模の独自な評価を試みています

地球環境学掌

－教㖟滕井 滋穗 \bullet Prof．Shigeo Fujii

－治教投田中周平

－Assoc．Prof．Shuhei Tanaka

－地球親和型の技術開発およびその展開

地球文明の持続性を達成するためには，産業形態を噮境調和型に変換する必要がある。本分野では，水質分析•水処理技術，微量污染物質の分析•処理技術，衛
 モデル化解析による実用的•実践的な研究を展開する。
－教授亀田貴之
－Prof．Takayuki Kameda
－時数山本浩平 －Asst．Prof．Kouhei Yamamoto

－大気環境科学に基づく人間活動の環境影響評価

エネルギ一環境学分野では，大気污染物質が人の健康や社会，地球噮境等に与える負荷を評価するために，フィールド権則や模擬大気噮境下における実験，環境もデルを用いた解析などを行い，PM2．5に代表される大気微粒子（エアロゾル）等の䍗境中における動動態を包括的に理解するとともに，安全•安心な社会の実現 に貢献することを目指しています。

大気エアロゾルの性状特性と変質過程の解明及び発生源推定 アジアでは，急速な経済発展に伴しい曽加している化石燃料燃峔由来の人為起源粒子に加え，バイオマス燃烧による有機炭素粒子や黄砂などの自然起源粒子が発生しており，それらは変質を受けながら抁散•輸送されてし きます。これらの污染物質は局地的な気候変動やヒトの健康に影響をもた らすことから，その性状（組成，光学特性など）や変質過程を明らかにする

 は，化石燃料の燃燁により生成する多瓄方香族灾化水素（Polycyclic Aromatic Hydrocarbons；PAH）は黄䂧粒子に付差すると，有害な化合物 （PAH誘導体）へ速やかに化学変化することがわかりました。実際の環境大気におけるPAHやPAH誘導体濃度を計測するとともに，スモッグチャンバ一などを用いた室内反応実験を行い，大気内反応によるPA日誘導体の生成機構等について研究しています。

雷酸表面にあける有害PAH誩澊体生成のイメージ回

酸化能を指謤とした大気エアロン゙ルの生体影響評価
生体内で活性酸素種（Reactive Oxygen Species；ROS）が過剩に生成す ると蛋白質やDNAが酸化•損傷され，その結果さまでまな疾患を引きき起こ すと考えられていますが，大気粒子中にはROSの過剩生成をもたらす化学物質か数多く含まれています。そこで我々は，大気粒子や大気粒子中に含 まれる化学物質のROS生成能を，ジチオスレイトール（Dithiothreitol； DTT）との反応の速さ（酸化能）をもとに評価する，＂DTTアッセイ゙という手法を用いて明らかにしようとしています。

大気エアロゾル中有害化学物質の新規測定法開発

大気粒子に含まれる有害化学物質の多くは濃度が極めて低く，その存在量や環境中の振る舞いを明らかにするためには，それらを高感度•高精度で測定する手法の確立が重要となります。そこで我々は，高速液体 クロマトグラフィ（HPLC）やガスクロマトグラフー質量分析装置 （GC－MS）などを利用した大気粒子中有害化学物質の新規測定法開発に取り組んでいます。

環境モデルを用いた大気環境の管理•影響評価手法の開発
大気質（化学輸送）モデルや大気圈•水圈•地圏中の環境動態をモデル化 した多媒体モデルなどの環境モデルを援用して，都市域からアジア域にお けるPM2．5，オキシダント，重金属などの環境負荷物質の動態解析と環境影響評価を行っています。また，広域における環境汚染物質分布推定手法 の一つである，空間統計学に基づく環境污染物質の濃度分布予測モデルの開発を行い，これを用いた環境污染現象の空間スケール（空間代表性）に関 する検討も行っています。今後の発展としては，これらの数理モデルを統合することにより，大気を中心とした環境管理•環境影響評価手法の碓立 を目指していきます。

CONCEPT

断水や停電で，水道やお風呂，トイレが使えなくなった経験があると思います。もし，地震などの災害 で，この状況が長期間に及んだとしたらどんな生活になるのか，想像してみて下さい。飲み水は出ませ んし，トイレも流せません。もちろん，お風呂にも入れず，家庭ごみは溜まる一方で，またたく間に人々 の生活は停止します。空気も水も同じです。＂あたりまえ＂と思っていることが実は高度な技術によって支えられていることに気付かされます。人は森や海川などの環境と共に生きており，これに逆らって生きることはできません。一方で，豊かで快適な暮らしを営むためには，人が環境を守りつつ，暮らしも創っていく必要があります。

人は環境に生かされ，暮らしは人から生まれる
地球工学科•環境工学コースでは，私たちの暮らしを，人々の環境を支えるエキスパートを世界に送り出します。人と地球の＂あたりまえ＂を創る，それが私たちの使命です。

RESEARCH

環境インフラ整備と環境対策の先駆者
地球工学科•環境工学コースは，明治時代からわが国における上水道や下水道，廃革物施設の整備を担い続けてきました。近年は，より高度な上下水処理法や廃裹物の処理技術，施設の維持に関する研究を行い，人体に有害な物質の発生や影響のメカニズムの研究をリードしてい ます。水問題や廃重物問題は，その地域に特有であるため，世界各地での現揚調查やインフラ整備も行っています。

また，大気や水•土壌環境問題に対し，技術的な面からのみではなく，法令，制度などの仕組み づくりにも貢献してきています。さらに，地球温曼化問題，3R＊問題および放射䧼廃菓物問題 についてもこれらの問題か賈在化した当初から本格的に取り組んでおり，国や地域の政策決定にも係わるなど，わが国のみならず世界で最も優れた教肓•研究珸境を備えています。
 $* 3 R$ ：Reduce（排出の抑制），Reuse（再使用），Recycle（再生利用）の 3 つの「R」

HISTORY

沿革
地球工学科は，京都帝国大学が創立した明治 30 年（1897）に土木工学教室として設立されており，京都大学で最も麻史と伝統のある学科です。そ の中でも環境工学コースの前身である衛生工学科は，大学設置時から設立されていた同学科第三講座（衛生工学）を拡充し昭和 33 年（1958）に発足しました。いのち（生）をまも（衛）るをモットーに，環境インフラの整備や公害の解決など，人々の豊かな生活を支える学問として発展し，わが国のみならず世界からも高い評価を得ています

COURSE

コース紹介

未来の環境づくりに取り組む環境工学コース

地球工学科•環境工学コースは，人々が豊かで快適な生活を営むため，地域•地球の環境整備に関する研究•教育を行うコースです。
地球工学科には185名が入学し，1～2回生で基礎科目を学習し，3回生から環境工学，土木工学，資源工学，国際コースの4コースに分かれ，専門科目を学びます。このうち環境工学コースの定員は38名です。珸境工学コースで学びたいと思う人は，まず工学部地球工学科を受験して下さい。また，高等専門学校からの編入試験で入学した人は，地球工学科2回生へ編入することになります。
環境工学コースを卒業した人のほとんどは，京都大学内の大学院である工学研究科•都市環境工学專攻，地球環境学舍およびエネルギー科学研究科に進学 します。

工学部

CURRICULUM

カリキュラム紹介

1 回生および 2 回生では，教養科目と工学 の基礎科目を履修します。これらの科目は京都大学の学部あるいは地球工学科全学生に向けて開講されており，高等学校で学 んだ科目や入学試験科目で学んだ知識をさ らに深めます。

3 回生および 4回生では，環境工学に関わ る專門科目，実験•演習科目があり，環境 1 ンフラ施設の整備や環境問題に対処するた めの技術や知識を習得します。

3 回生の選択科目には学外実習（インターンシップ）があり，企業や中央省庁•自治体，NGOなどで実務を体験することができます。4回生の科目には，各人別々のテーマの特別研究（卒業研究）があります。特別研究では成果を学士論文としてまとめることで，学士（工学）の学位を取得します。

世界に羽ばたく！

京都大学地球工学科は，大学専門別の世界ランキングで13位（QS World University Rankings）とされています。京都大学の世界ランキングは35位ですから，その中でも地球工学科は特に優れた教育•研究活動を行っていることを示しています（2018年）。

中国，ベトナム，マレーシア，タイに環境工学コースの海外拠点を設置しており，現地で のインターンシップや特別研究を実施しています。海外からの短期交流学生の研修や海外大学との勉強会なども，積極的に行っています。海外の教職員•学生と切硅琢磨し て国際感覚を養いながら，世界に羽ばたく教育•研究環境を構築しています。

